更多>>精华博文推荐
更多>>人气最旺专家

竹影

领域:河南金融网

介绍:其实这一过程就是“长江后浪推前浪,前浪死在沙滩上”“站在别人的肩膀上更进一步”。...

邱兴龙

领域:京华网

介绍:PAGE第1课时 等比数列的前n项和课后篇巩固探究                 A组1.已知数列{an}的通项公式是an=2n,Sn是数列{an}的前n项和,则S10等于(  )解析∵an+1an=2n+12n=2,∴S10=2(1-210)答案D2.在等比数列{an}中,a2=9,a5=243,则{an}的前4项和为(  )解析因为a5a2=27=q3,所以q=3,a1=a2q=3,S4答案B3.已知等比数列{an}的前n项和为Sn,且a1+a3=,a2+a4=,则Snan=解析设公比为q,则q=a2于是a1+a1=,因此a1=2,于是Sn=21-12n1-12=41-12n,而答案D4.在14与之间插入n个数组成一个等比数列,若各项总和为778,则此数列的项数为(  解析设a1=14,an+2=,则Sn+2=14-解得q=-.所以an+2=14·-1解得n=3.故该数列共5项.答案B5.已知首项为1,公比为的等比数列{an}的前n项和为Sn,则(  )====3-2an解析在等比数列{an}中,Sn=a1-anq1-答案D6.对于等比数列{an},若a1=5,q=2,Sn=35,则an=     .解析由Sn=a1-anq1-q答案207.在等比数列{an}中,设前n项和为Sn,若a3=2S2+1,a4=2S3+1,则公比q=    .解析因为a3=2S2+1,a4=2S3+1,两式相减,得a4-a3=2a3,即a4=3a3,所以q=a4答案38.数列12,24,38,…,n2解析∵Sn=12+222+Sn=122+223由①-②,得Sn=12+122+123∴Sn=2-12答案2-19.已知等比数列{an}满足a3=12,a8=,记其前n项和为Sn.(1)求数列{an}的通项公式an;(2)若Sn=93,求n.解(1)设等比数列{an}的公比为q,则a3=所以an=a1qn-1=48·12(2)Sn=a1(1-由Sn=93,得961-12n=10.导学号04994046已知等差数列{an}的首项为a,公差为b,方程ax2-3x+2=0的解为1和b(b≠1).(1)求数列{an}的通项公式;(2)若数列{an}满足bn=an·2n,求数列{bn}的前n项和Tn.解(1)因为方程ax2-3x+2=0的两根为x1=1,x2=b,可得a-3+2=0,ab2-3b+2=0(2)由(1)得bn=(2n-1)·2n,所以Tn=b1+b2+…+bn=1×2+3×22+…+(2n-1)·2n,①2Tn=1×22+3×23+…+(2n-3)·2n+(2n-1)·2n+1,②由①-②,得-Tn=1×2+2×22+2×23+…+2·2n-(2n-1)·2n+1=2(2+22+23+…+2n)-(2n-1)·2n+1-2=2·2(1-2n)1-2-(2n-1)·2n+1-2=(3所以Tn=(2n-3)·2n+1+组1.等比数列{an}的前n项和为Sn,若S2n=3(a1+a3+…+a2n-1),a1a2a3=8,则Sn=++1解析显然q≠1,由已知,得a1(1-q整理,得q=2.因为a1a2a3=8,所以所以a2=2,从而a1=1.于是Sn=1-2n1-2答案A2.已知数列{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列1an的前5项和为(或解析由题意易知公比q≠1.由9S3=S6,得9·a1(1-所以1an所以其前5项和为S5=1×答案C3.在等比数列{an}中,a1+a2+…+a5=27,1a1+1a2+…+1a5A.±±解析设公比为q,则由已知可得a两式相除,得a12q4=9,即a32=9,所以a答案C4.若等比数列{an}的前n项和为Sn,且S1,S3,S2成等差数列,则{an}的公比q=    .解析由题意,得a1+(a1+a1q)=2(a1+a1q+a1q2),又a1≠0,q≠0,故q=-.答案-+322+423+解析设Sn=1+322+423+…+n2n-1+n+12n,则Sn=22所以Sn=3-n+3答案3-n6.若等比数列{an}的利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉

尊龙用现娱乐一下
本站新公告利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉
lxy | 2019-01-23 | 阅读(77) | 评论(65)
PAGE考点44两点间的距离公式要点阐述要点阐述两点间的距离公式两点坐标P1(x1,y1),P2(x2,y2)距离公式|P1P2|=特例若O(0,0),P(x,y),则|OP|=典型例题典型例题【例】某地东西有一条河,南北有一条路,A村在路西3千米、河北岸4千米处;B村在路东2千米、河北岸eq\r(3)千米处.两村拟在河边建一座水力发电站,要求发电站到两村距离相等,问:发电站建在何处?到两村的距离为多远?【解题技巧】两点间的距离公式可用来解决一些有关距离的问题,根据题目条件直接套用公式即可,要注意公式的变形应用,公式中两点的位置没有先后之分.小试牛刀小试牛刀1.已知M(2,1),N(-1,5),则|MN|等于(  )A.5B.eq\r(37)C.eq\r(13)D.4【答案】A【解析】|MN|=eq\r(2+12+1-52)=5.【思想方法】坐标平面内两点间的距离公式,是解析几何中的最基本最重要的公式之一,利用它可以求平面上任意两个已知点间的距离.反过来,已知两点间的距离也可以根据条件求其中一个点的坐标.2.已知点A(-2,-1),B(a,3),且|AB|=5,则a的值为(  )A.1B.-5C.1或-5D.-1或5【答案】C【解析】由|AB|==5,可知(a+2)2=9.∴a=1或-5.3.一条平行于轴的线段的长是5,它的一个端点是,则它的另一个端点的坐标是(  )A.(–3,1)或(7,1)B.(2,–3)或(2,7)C.(–3,1)或(5,1)D.(2,–3)或(2,5)【答案】A【解析】设B(a,1),则,或7.4.光线从点A(-3,5)射到x轴上,经反射后经过点B(2,10),则光线从A到B的距离是(  )A.5eq\r(2)B.2eq\r(5)C.5eq\r(10)D.10eq\r(5)【答案】C【规律方法】(1)两点间的距离公式与两点的先后顺序无关,利用此公式可以将有关的几何问题转化成代数问题进行研究.(2)当点,在直线上时,=.5.若点在轴上,点在轴上,线段的中点的坐标为(3,4),则的长度为(  )A.10B.5C.8D.6【答案】A6.两直线3ax-y-2=0和(2a-1)x+5ay-1=0分别过定点A,B,则|ABA.eq\f(\r(89),5)B.eq\f(17,5)C.eq\f(13,5)D.eq\f(11,5)【答案】C【解析】直线3ax-y-2=0过定点A(0,-2),直线(2a-1)x+5ay-1=0,过定点Beq\b\lc\(\rc\)(\a\vs4\al\co1(-1,\f(2,5))),由两点间的距离公式,得|AB|=eq\f(13,5).考题速递考题速递1.以A(5,5),B(1,4),C(4,1)为顶点的三角形是(  )A.直角三角形B.等腰三角形C.等边三角形D.等腰直角三角形【答案】B【解析】∵|AB|=eq\r(17),|AC|=eq\r(17),|BC|=3eq\r(2),∴三角形为等腰三角形.故选B.2.已知点A(1,2),B(7,10),则以为斜边的直角三角形斜边上的中线长为(  )A.5B.7C.9D.10【答案】A【解析】,∴中线长是5.3.在直线上求点,使点到点的距离为,则点坐标是(  )A.(5,5)B.(–1,1)C.(5,5)或(–1,1)D.(5,5)或(1,–1)【答案】C4.已知,,当取最小值时,求实数的值.【解析】由两点间的距离公式得.∴当时,取最小值.数学文化数学文化距离两点间的距离(两点之间线段最短)【阅读全文】
利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉
9vg | 2019-01-23 | 阅读(262) | 评论(491)
看得见DdDd看不见头疼头疼?确诊H1N1患者咳嗽咳嗽发烧发烧乙甲*P红眼  × 白眼     F1红眼 (、)F23/4红眼 1/4白眼  (、)   F1相互交配——摩尔根的果蝇眼色的遗传实验分析二、基因位于染色体上的实验证据1、实验:为何选用果蝇作实验材料?因为果蝇易饲养、繁殖快、生长周期短而且后代多,有利于研究它的性状分离。【阅读全文】
iaw | 2019-01-23 | 阅读(146) | 评论(260)
由于仅蛋白质分子中含有S,而P几乎都存在于DNA中(搅拌的目的是使吸附在细【阅读全文】
0kl | 2019-01-23 | 阅读(827) | 评论(596)
 极大值与极小值学习目标重点难点1.记住函数的极大值、极小值的概念.2.结合图象知道函数在某点取得极值的必要条件和充分条件.3.会用导数求不超过三次的多项式函数的极大、极小值.重点:利用导数求函数的极值.难点:函数极值的判断和与极值有关的参数问题.1.极值(1)观察下图中的函数图象,发现函数图象在点P处从左侧到右侧由“上升”变为“下降”(函数由单调________变为单调________),这时在点P附近,点P的位置最高,亦即f(x1)比它附近点的函数值都要大,我们称f(x1)为函数f(x)的一个________.(2)类似地,上图中f(x2)为函数的一个________.(3)函数的极大值、极小值统称为函数的______.预习交流1做一做:函数y=-|x|有极______值______.2.极值点与导数的关系观察上面的函数的图象,发现:(1)极大值与导数之间的关系如下表:xx1左侧x1x1右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)增极大值f(x1)减(2)极小值与导数之间的关系如下表:xx2左侧x2x2右侧f′(x)f′(x)____f′(x)____f′(x)____f(x)减极小值f(x2)增预习交流2做一做:函数f(x)=3x-x3的极大值为________,极小值为________.预习交流3议一议:(1)导数为0的点一定是函数的极值点吗?(2)函数在极值点处的导数一定等于0吗?(3)一个函数在一个区间的端点处可以取得极值吗?(4)一个函数在给定的区间上是否一定有极值?若有极值,是否可以有多个?极大值一定比极小值大吗?在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引1.(1)递增 递减 极大值 (2)极小值 (3)极值预习交流1:提示:大 02.(1)>0 =0 <0 (2)<0 =0 >0预习交流2:提示:f′(x)=3-3x2,令f′(x)=0得x=±1,由极值的定义可得函数的极大值为f(1)=2,极小值为f(-1)=-2.预习交流3:提示:(1)不一定,例如对于函数f(x)=x3,虽有f′(0)=0,但x=0并不是f(x)=x3的极值点,要使导数为0的点成为极值点,还必须满足其他条件.(2)不一定,例如函数f(x)=|x-1|,它在x=1处取得极小值,但它在x=1处不可导,就更谈不上导数等于0了.(3)不可以,函数在一个区间的端点处一定不可能取得极值,因为不符合极值点的定义.(4)在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值也不一定比极大值小.一、求函数的极值求下列函数的极值:(1)f(x)=x3-12x;(2)f(x)=eq\f(2x,x2+1)-2.思路分析:首先从方程f′(x)=0入手,求出在函数f(x)的定义域内所有可能的极值点,然后按照函数极值的定义判断这些点是否为极值点.1.函数y=1+3x-x3有极大值__________,极小值__________.2.求函数f(x)=x3-3x2-9x+5的极值.利用导数求函数极值的步骤:(1)求导数f′(x);(2)求方程f′(x)=0的所有实数根;(3)考察在每个根x0附近,从左到右导函数f′(x)的符号如何变化:①如果f′(x)的符号由正变负,则f(x0)是极大值;②如果由负变正,则f(x0)是极小值;③如果在f′(x)=0的根x=x0的左右侧f′(x)的符号不变,则不是极值点.二、已知函数的极值求参数范围已知函数f(x)=ax3+bx+2在x=1处取得极值,且极值为0.(1)求a,b的值;(2)求f(x)的另一个极值.思路分析:由极值的定义可知f′(1)=0,再结合f(1)=0,建立关于a,b的方程即可求得a,b的值,从而得出另一个极值.1.已知函数y=-x3+6x2+m有极大值13,则m的值为________.2.若函数f(x)=x3+ax在R上有两个极值点,则实数a的取值范围是__________.1.已知函数极值情况,逆向应用,确定函数的解析式,进而研究函数性质时,注意两点:(1)常根据极值点处导数为0和已知极值(或极值之间的关系)列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.对于可导函数f(x),若它有极值点x0,则必有f′(x0)=0,因此函数【阅读全文】
a8e | 2019-01-23 | 阅读(514) | 评论(809)
看看说说两把大扇子一个长长的钩子一根小小的辫子弯弯的月亮像。【阅读全文】
xzv | 2019-01-22 | 阅读(501) | 评论(238)
大象又高又大,身子像一堵墙,腿像四根柱子。【阅读全文】
bi9 | 2019-01-22 | 阅读(793) | 评论(593)
“这周边学校多,而且都是不错的学校。【阅读全文】
eqw | 2019-01-22 | 阅读(35) | 评论(986)
2.不仅体现在量上,也要体现在质上。【阅读全文】
利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉,利来国际娱乐官方荣誉
xzb | 2019-01-22 | 阅读(824) | 评论(175)
随着电商时代的来临,电子商务在互联网业界不断地发展,买家、卖家的采购、销售需求也对互联网提出了更高的要求。【阅读全文】
8cu | 2019-01-21 | 阅读(577) | 评论(599)
如果专利权人对他们也进行投诉,那么在他们不能提供产品合法性理由时,我们也会作出同样的处理。【阅读全文】
pqc | 2019-01-21 | 阅读(563) | 评论(362)
6、曹冲称象;大象是陆地上最大的动物,现存的大象仅两种,非洲象和亚洲象。【阅读全文】
9mu | 2019-01-21 | 阅读(609) | 评论(298)
I1.1.1我国节水现状……………………………...…………………………l1.1.2高校节水现状……………………………………………………….41.1.3国外节水情况………………………………:……………………….5.1.2课题研究背景及意义………………………………………………………51.3课题来源及研究内容………………………………………………………61.3.1课题来源……………………………………………………………一61.3.2研究内容…………………………………………………………….6第2章.高校用水的调研方法及分析方法………………………………………….82.1高校用水分析的内涵……………………………………………………….82.2高校用水调研方法……………………-……………………………………82.2.1确定典型建筑物的目的…………………………………………I一82.2.2确定典型建筑物的方法…………………………………………….82.2.3第一阶段测试……………………………………………………….92.2.4第二阶段测试………………………………………………………lo第3章.高校综合用水量分析………………………………………………………133.1学生宿舍用水………………………………………………………………133.1.1分析往年数据………………………………………………………133.1.2分析实验数据………………………………………………………133.1.3学生公寓节水措施…………………………………………………213.2食堂用水……………………………………………………………………233.2.1分析实验数据………………………………………………………233.2.2实验数据结论………………………………………………………273.3浴室用水…………………………………………………………………283.3.1研究对象介绍………………....……………………………………283.3.2监测数据分析。【阅读全文】
j7t | 2019-01-21 | 阅读(68) | 评论(132)
望大家配合,以营造出一个优秀、和谐的班集体!第十学习小组组长整改措施我的职位男厕所负责人我的职责首先,安排好每天的值日生(早、中、下午及晚上),再如实评价和记载该天的卫生情况,管理好清洁工具和班费的开支,不定期地在班上进行生活辅导。【阅读全文】
fc7 | 2019-01-20 | 阅读(602) | 评论(204)
1、直——2、才——3、到底——6.**【阅读全文】
y8o | 2019-01-20 | 阅读(738) | 评论(637)
一是思想观念比较陈旧。【阅读全文】
一周热点
本站互助
共5页

友情链接,当前时间:2019-01-23

w66利来娱乐 利来国际娱乐官方 w66利来娱乐 利来国际是多少 利来国际网址
利来国际老牌博彩手机 利来国际W66 利来ag www.w66.com w66利来国际手机app
w66.C0m w66利来guoji 利来国际官方网站 利来网页 利来娱乐w66
利来国际官网平台 利来国际w66.com 利来娱乐w66 利来国际w66平台 利来国际官网w66
信宜市| 绥德县| 遵化市| 德兴市| 长武县| 涞源县| 东港市| 克拉玛依市| 陆河县| 庐江县| 邯郸市| 肥东县| 噶尔县| 遂昌县| 嘉荫县| 丹江口市| 长泰县| 新龙县| 永登县| 长沙县| 武义县| 黑水县| 林西县| 高陵县| 二连浩特市| 南康市| 军事| 枣庄市| 镇安县| 丘北县| 綦江县| 赤水市| 微博| 通海县| 阳春市| 珲春市| 天峻县| 双桥区| 汕头市| 桦南县| 富阳市| http://m.07109136.cn http://m.94461253.cn http://m.37583094.cn http://m.22333168.cn http://m.26212015.cn http://m.61122457.cn